Effect of Gibberellin Treatment on Growth and Flowering Characteristics in the Cultivation of *Aquilegia japonica* Nakai & H. Hara

Hoon Geun Oh¹*, Joung Won Lee¹, Gyeong Ja Lee² and Jae Seong Park²

¹Researcher, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Korea
²Senior Researcher, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Korea

Abstract - This study was conducted to develop gibberellin treatment technique to enhance flower initiation in *Aquilegia japonica* Nakai & H. Hara. Seedlings were planted in 12㎝-diameter pots on October 2016 and grown in green house. Ambient temperature in the green house was set at minimum 15 ℃ during day and night to suppress flower initiation at cold temperature condition. Two different types of gibberellin, GA₃ and GA₄+₇, at 4 different concentration levels 100, 200, 400 and 600 mg/L, were tested in this study. Gibberellin was sprayed first at planting and secondly at 1-week after planting. Ten to fifteen ㎖ of gibberellin was sprayed for each pot. Plant height and petiole length were elongated by both gibberellin types, flowering was more enhanced by GA₃ (91.7 ∼ 100%) compared to of GA₄+₇. However, abnormal flower was less observed in GA₃ treatment (0 ∼ 16.7%) than GA₄+₇. Number of flower stalks per plant ranged from 1.9 to 2.5. Number of flowers per plant ranged from 6.8 to 10.3. Differences in flowering characteristics between treatments were statistically significant. Optimal gibberellin treatment to enhance flower initiation in *A. japonica* Nakai & H. Hara substituting cold treatment was GA₃ at the concentration between 400 mg/L to 600 mg/L.

Key words - Floral differentiation, Plant growth regulator, Stem elongation

Introduction

Aquilegia belongs to Ranunculaceae which include about 70 perennial plant species. Natural habitats found in meadow and higher altitude area throughout the Northern Hemisphere. Three species, *A. japonica* Nakai & H. Hara, *A. buergariana* var. *oxysepala* and *A. buergariana* var. *oxysepala f. pallidiflora* reportedly distribute in Korean Peninsula (Lee, 2003), and Ha et al. (2016) reported that *A. buergariana* var. *oxysepala* distribute in Gyeonggi-do province, Korea. *A. japonica* Nakai & H. Hara is widely cultivated in domestic ornamental flower market. *Aquilegia* normally flowers from April to May. Cold temperature triggers floral differentiation and further flower development. Minimum 8 weeks of cold treatment at 4 ℃ at 12-leaves stage is needed to initiate flower development (Shedron and Weiler, 1982). White et al. (1990) reported that floral differentiation and further development of 13 species of *Aquilegia* was not observed after 7 months cultivation at 20 ℃ regardless of light condition. However, Zhang et al. (1991) reported that *Aquilegia* ‘Dove’ and ‘Purple’ flowered after 7~8 months cultivation at 20 ℃ day and 16 ℃ night temperature condition. They concluded gibberellin and light treatment accelerated flowering time by 2 weeks compared to control. Gibberellin is a plant physiological metabolism regulator. Lim et al. (2015) reported that gibberellin can facilitate germination of *Pinus pumila*. Gibberellin can facilitate floral differentiation and further flower development in some of angiosperm species which usually need long day and cold temperature condition to initiate floral differentiation and development (Ruth et al., 1992). Anton (1957) studied effect of gibberellin treatment on flowering in 17 angiosperm species and GA treatment enhanced flowering of *Daucus carota* L. (biennial plant) and *Hyoscyamus niger* L. (long-day plant), while *Glycine max* L. (short-day plant) did not respond by GA treatment. However, physiological mechanism controlling GA induced flowering in angiosperm is not clear yet. Zeevaart (1983) reported that flowering on *Samolus parviflorus* was inhibited by gibberellin biosynthesis inhibitor treatment.

*Corresponding author. E-mail : deuxhg@korea.kr
Tel. +82-43-220-5643

ⓒ 2018 by The Plant Resources Society of Korea
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
This result suggested that the gibberellin biosynthetic pathway determined flowering in *Aquilegia parviflora*.

In this study we tested different GA types at various concentrations and proposed optimal treatment enhancing flower initiation and further flower development of *Aquilegia japonica* Nakai & H. Hara.

Materials and Methods

Plant materials and treatment

Aquilegia japonica Nakai & H. Hara seedlings were planted in 12 cm-diameter pots on October 2016 and grown in green house. Ambient temperature in the green house was set at minimum 15°C during day and night to suppress flower initiation at cold temperature condition. Two different types of gibberellin, GA3 and GA4+7, at 4 different concentration levels 100, 200, 400 and 600 mg/L, were tested in this study.

Gibberellin was sprayed first at planting and secondly at 1-week after planting. Ten to fifteen ml of gibberellin was sprayed for each pot. Positions of 10 plants per treatment were completely randomized and experiments were repeated 3 times.

Growth characteristics and Chlorophyll content measurement

Growth characteristics including plant height, leaf length, leaf width and petiole length were measured according to agricultural examination research investigation standard (RDA, 2003) at 60-days after gibberellin treatment.

Chlorophyll content was measured by portable chlorophyll meter (JP/SPAD-502, Konica minolta). Flower characteristics including number of flower stalks, flower stalk length, number of flowers and corolla length were measured following agricultural examination research investigation standard (RDA, 2003) at 45-days after gibberellin treatment. Flowering percentage was calculated and abnormal flower morphology such as flower stalk dwarfness and fading flower color were monitored and frequency of abnormal flower was recorded.

Data analysis

Data were analyzed using CoStat (CoHort software, version 6.45, USA), and statistical significance between treatments were determined by Duncan’s multiple range test.

Results and Discussion

Growth characteristics

The growth of *A. japonica* Nakai & H. Hara at 45 days after gibberellin treatment is summarized in Table 1. Plant height was statistically different by gibberellin treatments compared to control. There was no noticeable difference between GA treatment and treatment at 100 mg/L concentration. However, plant height was started show difference at higher GA concentrations compared to control. Plant height ranged between 8.2–14.2 cm when GA3 and GA4+7 were treated at 200, 400 and 600 mg/L compared to 8.0 cm in control. Gibberellin is one of the plant growth regulator and can cause rice banaeae disease (Galston, 1961).

One of the major effect of gibberellin on plant physiology is plant stem elongation. Phinney *et al.* (1986) proved that dwarfed maize caused by inhibition of endogenous gibberellin biosynthesis could be overcome by synthetic gibberellin treatment. Similarly plant height of *A. japonica* Nakai & H. Hara was elongated by gibberellin treatment in this study. But *A. japonica* Nakai & H. Hara, differently from maize is a rosette type plant with dwarf stem. Because of this reason, plant height elongation of *A. japonica* Nakai & H. Hara is driven by leaf and petiole length elongation rather than stem elongation. In our study, leaf length was 5.5 cm in control while leaf length ranged from 6.1 cm to 7.1 cm when GA3 at 200–600 mg/L was treated and 6.6 cm to 6.8 cm when GA4+7 at 200–600 mg/L was treated. Petiole length was even greater than leaf length. Petiole length was 5.3 cm in control while it ranged from 8.2 cm to 13.0 cm when GA3 at 100–600 mg/L was treated, and 9.9 cm to 13.2 cm when GA4+7 at 100–600 mg/L was treated. Similarly, Tamotsu *et al.* (2005) also reported that the petiole of *Arabidopsis thaliana* was elongated by gibberellin treatment.

Gibberellin can elongate leaf or petiole as well as stem or stem node. We observed that leaf width was significantly elongated. Leaf width was 10.1 cm in control while it was 12.2 cm when GA3 at 400 mg/L was treated, and 12.7 cm when GA3 at 600 mg/L was treated and similar trend was observed in GA4+7 treatments. Leaf width was 12.3 cm when GA4+7 at 400 mg/L was treated and 11.8 cm when GA4+7 at 600 mg/L was treated. Gibberellin can facilitate plant cell division and
Effect of Gibberellin Treatment on Growth and Flowering Characteristics in the Cultivation of *Aquilegia japonica* Nakai & H. Hara

Table 1. Effect of gibberellin treatment on growth characteristics in the cultivation of *A. japonica* Nakai & H. Hara

<table>
<thead>
<tr>
<th>Gibberellin Type</th>
<th>Plant height (cm)</th>
<th>Leaf length (cm)</th>
<th>Leaf width (cm)</th>
<th>Petiole length (cm)</th>
<th>No. of leaves/plant</th>
<th>No. of tillerings/plant</th>
<th>Chlorophyll content (SPAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8.0 c’</td>
<td>5.5 cd</td>
<td>10.1 cd</td>
<td>5.3 e</td>
<td>28.9 ab</td>
<td>4.0 b</td>
<td>57.2 a</td>
</tr>
<tr>
<td>GA3</td>
<td>100</td>
<td>10.2 c</td>
<td>5.2 d</td>
<td>8.9 d</td>
<td>33.2 a</td>
<td>4.6 ab</td>
<td>57.6 a</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>19.0 ab</td>
<td>6.1 a-d</td>
<td>10.5 b-d</td>
<td>18.3 c</td>
<td>3.6 c</td>
<td>54.6 ab</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>21.1 a</td>
<td>7.0 a</td>
<td>12.2 ab</td>
<td>18.0 c</td>
<td>4.0 b</td>
<td>51.0 b</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>22.2 a</td>
<td>7.1 a</td>
<td>12.7 a</td>
<td>21.2 bc</td>
<td>4.2 b</td>
<td>54.6 ab</td>
</tr>
<tr>
<td>GA4+7</td>
<td>100</td>
<td>11.5 c</td>
<td>5.6 b-d</td>
<td>9.6 d</td>
<td>23.3 bc</td>
<td>3.4 c</td>
<td>56.3 ab</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>16.2 b</td>
<td>6.6 a-c</td>
<td>11.7 a-c</td>
<td>27.6 ab</td>
<td>6.1 a</td>
<td>53.7 ab</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>16.5 b</td>
<td>6.8 ab</td>
<td>12.3 ab</td>
<td>24.6 bc</td>
<td>5.1 ab</td>
<td>54.7 ab</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>19.6 ab</td>
<td>6.6 a-c</td>
<td>1.8 a-c</td>
<td>28.0 ab</td>
<td>6.1 a</td>
<td>51.5 b</td>
</tr>
</tbody>
</table>

*DMRT : 5%.
* p<0.05, ** p<0.01, *** p<0.001.

Table 2. Effect of gibberellin treatment on flowering and abnormal flowering percentage in the cultivation of *A. japonica* Nakai & H. Hara

<table>
<thead>
<tr>
<th>Gibberellin Type</th>
<th>Flowering percentage (%)</th>
<th>Abnormal flowering percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GA3</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>91.7</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>100.0</td>
</tr>
<tr>
<td>GA4+7</td>
<td>100</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>91.7</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>83.3</td>
</tr>
</tbody>
</table>

Effect of Gibberellin Treatment on Growth and Flowering Characteristics in the Cultivation of *Aquilegia japonica* Nakai & H. Hara

Flowering characteristics

A. japonica Nakai & H. Hara started flowering at 60 days after gibberellin treatment while control plants did not flower. Flowering percentage was 91.7~100% by GA3 and 58.3~91.7% by GA4+7 (Table 2). Flowering percentage was statistically different between GA3 and GA4+7 treatment. Anton (1957) reported that gibberellin could induce flowering on some of angiosperm species which need long-day and low temperature condition to flower. We also confirmed that *A. japonica* Nakai & H. Hara could start flowering by gibberellin treatment replacing cold treatment. Gianfagna and Merritt (1998) reported that *Aquilegia ‘Rose-White’* flowered after gibberellin treatment without low temperature condition, and flowering time was earlier by GA4+7 than GA3. However in our study, days to flowering was similar between treatments regardless of GA types. Interestingly, flowering percentage was higher by GA3 than GA4+7 (Fig. 1, Table 2). Abnormal flowers such as flower stalk dwarfness and fading flower...
color were observed at the frequency of 0~16.7% when GA$_3$ was treated, and this was lower than GA$_{4+7}$ treatment (18.2~28.6%). Suh et al. (1992) reported that the flower color of tulip ‘Apeldoorn’ was clearer by GA$_{4+7}$ than no treatment control. And Lee (1988) reported that gibberellin facilitated flowering time of *Camellia japonica*. However, our result was different possibly because of the difference in experimental design and condition. Respond of different plant materials by different GA types might result in difference in results as well.

Flowering characteristics of *A. japonica* Nakai & H. Hara were favorable by GA$_3$ treatment than GA$_{4+7}$ (Fig. 2). Number of flower stalks per plant was higher by GA$_3$ ranging between 1.9 and 2.5 compared to 0.8 and 2.0 by GA$_{4+7}$ (Table 3). Flower stalk length ranged from 7.2 cm to 10.4 cm by GA$_3$ compared to 4.5 cm to 8.5 cm by GA$_{4+7}$. Peduncle length ranged from 0.9 cm to 1.3 cm by GA$_3$ compared to 0.3 cm to 0.8 cm by GA$_{4+7}$. Flower stalk and peduncle length especially appeared to elongate longer by GA$_3$. Interestingly, petiole length was elongated regardless of gibberellin types. Flower stalk diameter was also longer by GA$_3$ ranging between 3.0 mm to 3.6 mm compared to 1.7 mm to 2.6 mm by GA$_{4+7}$. But statistical significance was not remarkable compared to other characteristics. Number of flowers per plant was significantly different between GA types and concentrations. Number of flowers per plant was higher by GA$_3$ than GA$_{4+7}$. In addition, number of flowers increased with increase in GA concentration. It was 2.0 by GA$_{4+7}$ at 100 mg/L compared to 10.3 by GA$_3$ at 600 mg/L. Flower size was also bigger by GA$_3$ treatment. Corolla height ranged between 2.0 cm and 2.8 cm when GA$_3$ was treated compared to 1.1 cm to 1.9 cm by GA$_{4+7}$ treatment. Corolla height was statistically different between GA types.

Fig. 1. Effect of gibberellin treatment on flower growth in the cultivation of *A. japonica* Nakai & H. Hara (A) Normal Flower, (B) Abnormal flower (Flower stalk dwarfishness), (C) Abnormal flower (Fading flower color).

Fig. 2. Effect of gibberellin treatment on flowering characteristic in the cultivation of *A. japonica* Nakai & H. Hara.
Effect of Gibberellin Treatment on Growth and Flowering Characteristics in the Cultivation of *Aquilegia japonica* Nakai & H. Hara

Corolla width ranged between 3.2 cm and 4.0 cm by GA₃ compared to 1.9 cm to 2.7 cm by GA₄+7 treatment. There was statistical difference between GA types.

In conclusion, GA₃ was found more would be effective in regulating cell division and elongation of *A. japonica* Nakai & H. Hara. Optimal gibberellin for flowering on *A. japonica* Nakai & H. Hara, replacing cold treatment was GA₃ ranging between 400 mg/L and 600 mg/L.

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ011955)” Rural Development Administration, Republic of Korea.

References

DMRT : 5%
* p<0.05, ** p<0.01, *** p<0.001.

(Received 7 August 2018 ; Revised 28 September 2018 ; Accepted 29 October 2018)