All Issue

2025 Vol.38, Issue 3 Preview Page

Research Article

1 June 2025. pp. 284-299
Abstract
References
1

Abebe, B.K. and M.T. Alemayehu. 2022. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J. Agric. Food Res. 10:e100383.

10.1016/j.jafr.2022.100383
2

Amarowicz, R. and R.B. Pegg. 2008. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 110:865-878.

10.1002/ejlt.200800114
3

Antova, G.A., T.D. Stoilova, and M.M. Ivanova. 2014. Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. J. Food Compos. Anal. 33:146-152.

10.1016/j.jfca.2013.12.005
4

Anwar, R., M. Borbi, and A. Rakha. 2024. Significance and the use of legumes in developing weaning foods with a balanced nutrition-A review. Legume Sci. 6:e249.

10.1002/leg3.249
5

Arinathan, V., V.R. Mohan, and A.J. De Britto. 2003. Chemical composition of certain tribal pulses in South India. Int. J. Food Sci. Nutr. 54:209-217.

10.1080/0963748012009202612775370
6

Caprioli, G., F. Giusti, R. Ballini, G. Sagratini, P. Vila-Donat, S. Vittori, and D. Fiorini. 2016. Lipid nutritional value of legumes: Evaluation of different extraction methods and determination of fatty acid composition, Food Chem. 192: 965-971.

10.1016/j.foodchem.2015.07.10226304436
7

Carvalho, M., I. Gouvinhas, I. Castro, M. Matos, E. Rosa, V. Carnide, and A. Barros. 2021. Drought stress effect on polyphenolic content and antioxidant capacity of cowpea pods and seeds. J. Agron. Crop Sci. 207:197-207.

10.1111/jac.12454
8

Choi, H.W., M.Y. Kim, S.H. Lee, S. Sultana, and J.W. Bang. 2013. Molecular cytogenetic analysis of the Vigna species distributed in Korea. Genes Genom. 35:257-264.

10.1007/s13258-013-0089-1
9

Choi, Y.M., H. Yoon, M.J. Shin, S. Lee, J. Yi, Y.A. Jeon, X. Wang, and K.T. Desta. 2024a. Multivariate analysis of biochemical properties reveals diversity among yardlong beans of different origins. Antioxidants 13:e463.

10.3390/antiox1304046338671911PMC11047418
10

Choi, Y.M., M.J. Shin, H. Yoon, S. Lee, J. Yi, X. Wang, and K.T. Desta. 2024b. Nutritional qualities, metabolite contents, and antioxidant capacities of yardlong beans (Vigna unguiculata subsp. sesquipedalis) of different pod and seed colors. Antioxidants 13:e1134.

10.3390/antiox1309113439334793PMC11428976
11

Chongtham, S.K., E.L. Devi, K.J.K. SamantaraYasin, S.H. Wani, S. Mukherjee, A. Razzaq, I. Bhupenchandra, A.L. Jat, L.K. Singh, and A. Kumar. 2022. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. Planta 256:e24.

10.1007/s00425-022-03923-135767119
12

Devi, C.B., A. Kushwaha and A. Kumar. 2015. Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). J. Food Sci. Technol. 52:6821-6827.

10.1007/s13197-015-1832-126396436PMC4573095
13

Dinore, J.M., H. Shivaji Patil, S. Farooqui, V. Pradhan, and M. Farooqui. 2023. GC/MS and LC/MS phytochemical analysis of Vigna unguiculata L. Walp Pod, Chem. Biodiversity 20:e202200048.

10.1002/cbdv.20220004836576750
14

Doblado, R., J. Frías, and C. Vidal-Valverde. 2007. Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var. carilla) seeds induced by high pressure treatment. Food Chem. 101:918-923.

10.1016/j.foodchem.2006.02.043
15

Dwivedi, S.L., M.A. Chapman, M.T. Abberton, U.L. Akpo jotor, and R. Ortiz. 2023. Exploiting genetic and genomic resources to enhance productivity and abiotic stress adaptation of underutilized pulses. Front. Genet. 14:e1193780.

10.3389/fgene.2023.119378037396035PMC10311922
16

Farooq, M., M. Hussain, M. Usman, S. Farooq, S.S. Alghamdi, and K.H.M. Siddique. 2018. Impact of abiotic stresses on grain composition and quality in food legumes. J. Agric. Food Chem. 66:8887-8897.

10.1021/acs.jafc.8b0292430075073
17

Flyman, M.V. and A.J. Afolayan. 2008. Effect of plant maturity on the mineral content of the leaves of Momordica balsamina L. and Vigna unguiculata subsp. sesquipedalis (L.) Verdc. J. Food Qual. 31:661-671.

10.1111/j.1745-4557.2008.00218.x
18

Gerrano, A.S., Z.G. Thungo, H. Shimelis, J. Mashilo, and I. Mathew. 2022. Genotype-by-environment interaction for the contents of micro-nutrients and protein in the green pods of cowpea (Vigna unguiculata L. Walp.). Agriculture 12:e531.

10.3390/agriculture12040531
19

Goli, S.A.H., S.M. Sahafi, B. Rashidi, and M. Rahimmalek. 2013. Novel oilseed of Dracocephalum kotschyi with high n-3 to n-6 polyunsaturated fatty acid ratio. Ind. Crops Prod. 43:188-193.

10.1016/j.indcrop.2012.07.036
20

Gutiérrez-Uribe, J.A., I. Romo-Lopez, and S.O. Serna-Saldívar. 2011. Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomical parts. J. Func. Foods 3:290-297.

10.1016/j.jff.2011.05.004
21

Huynh, B.-L., R.M. Dahlquist-Willard, A.T. Pleog, M. Yang, L. Thaoxaochay, J. Kanter, S. Brar, J. Paz, S. Qaderi, H. Singh, T. Duong, H. Dinh, H.P. Kang, W.C. Matthews, A. De Souza, A. Bhatia, H. Ke, J.D. Ehlers, and P.A. Roberst. 2024. Registration of four pest‐resistant long bean germplasm lines. J. Plant Regist. 18:415-425.

10.1002/plr2.20361
22

Karapanos, I., A. Papandreou, M. Skouloudi, D. Makrogianni, J.A. Fernández, E. Rosa, G. Ntatsi, P.J. Bebeli, and D. Savvas. 2017. Cowpea fresh pods - a new legume for the market: assessment of their quality and dietary characteristics of 37 cowpea accessions grown in southern Europe. J. Sci. Food Agric. 97:4343-4352.

10.1002/jsfa.841828485024
23

Kouřimská, L., K. Pokhrel, M. Božik, S.K. Tilami, and P. Horčička. 2021. Fat content and fatty acid profiles of recently registered varieties of naked and hulled oats with and without husks. J. Cereal Sci. 99:e103216.

10.1016/j.jcs.2021.103216
24

Kussie, B., Y. Tadele and A. Asresie. 2024. Effect of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) intercropping on agronomic performance, yield, and nutritional values under supplementary irrigation. Heliyon 10:e39817.

10.1016/j.heliyon.2024.e3981739568837PMC11577188
25

Lee, D.H., J.H. Kim, C.Y. Park, K.M. Kim, H.M. Kim, U.S. Shin, D.H. Kim, C.S. Na, and W.G. Park. 2024. Antioxidant activity, total phenolic content, total flavonoid content, and total anthocyanin content of Vaccinium oldhamii Miq. collected from 11 regions of South Korea. Korean J. Plant Res. 37(3):235-246.

26

Lee, H.-H., J.-S. Kim, J.-H. Jeong, C.S. Kim, and S.Y. Lee. 2023. Comparative analysis of antioxidant, anti aging and phenolic compounds of different solvent extracts from Saccharina japonica and Costaria costata. Korean J. Plant Res. 36(2):107-121 (in Korean).

27

Lee, K.J., G.-H. Kim, G.-A. Lee, J.-R. Lee, G.-T. Cho, K.-H. Ma, and S. Lee. 2021. Antioxidant activities and total phenolic contents of three legumes. Korean J. Plant Res. 34(6):527-535.

28

Liang, L., J. Zhang, J. Xiao, X. Li, Y. Xie, H. Tan, X. Song, L. Zhu, X. Xue, L. Xu, P. Zhou, J. Ran, B. Sun, Z. Huang, Y. Tang, L. Lin, G. Sun, Y. Lai, and H. Li. 2022. Genome and pan-genome assembly of asparagus bean (Vigna unguiculata ssp. sesquipedialis) reveal the genetic basis of cold adaptation. Front. Plant Sci. 13:e1059804.

10.3389/fpls.2022.105980436589110PMC9802904
29

Moloto, M.R., A.D.T. Phan, J.L. Shai, Y. Sultanbawa, and D. Sivakumar. 2020. Anti-diabetic activities in the leaves of seven cowpea (Vigna unguiculata) cultivars. Foods 9:e1285.

10.3390/foods909128532932725PMC7554895
30

Moriyama, M. and K. Oba. 2008. Comparative study on the vitamin C contents of the food legume seeds. J. Nutr. Sci. Vitaminol. 54:1-6.

10.3177/jnsv.54.118388400
31

Morshedloo, M.R., S. Fereydouni, H. Ahmadi, M.B. Hassanpouraghdam, A. Aghaee, L. Vojodi Mehrabani, and F. Maggi. 2022. Natural diversity in fatty acids profiles and antioxidant properties of sumac fruits (Rhus coriaria L.): Selection of preferable populations for food industries. Food Chem. 374:e131757.

10.1016/j.foodchem.2021.13175734920406
32

Nassourou, M.A., Y.N. Njintang, T.J.B. Noubissié, R.M. Nguimbou, and J.M. Bell. 2016. Genetics of seed flavonoid content and antioxidant activity in cowpea (Vigna unguiculata L. Walp.). Crop Journal 4:391-397.

10.1016/j.cj.2016.05.011
33

Niu, G. J. Masabni, T. Hooks, D. Leskovar, and J. Jifon. 2021. The performance of representative Asian vegetables in different production systems in Texas. Agronomy 11:e1874.

10.3390/agronomy11091874
34

Orberá Ratón, T.M., I. Bayard Vedey and A. Cuypers. 2021. Biostimulation of Vigna unguiculata subsp. Sesquipedalis- cultivar Sesquipedalis (yardlong bean)-by Brevibacillus sp. B65 in organoponic conditions. Curr. Microbiol. 78:1882- 1891.

10.1007/s00284-021-02453-533770214
35

Padhi, S.R., A. Bartwal, R. John, K. Tripathi, K. Gupta, D.P. Wankhede, G.P. Mishra, S. Kumar, S. Archak, and R. Bhardwaj. 2022. Evaluation and multivariate analysis of cowpea [Vigna unguiculata (L.) Walp] germplasm for selected nutrients-mining for nutri-dense accessions. Front. Sustain. Food Syst. 6:e888041.

10.3389/fsufs.2022.888041
36

Perchuk, I., T. Shelenga, M. Gurkina, E. Miroshnichenko, and M. Burlyaeva. 2020. Composition of primary and secondary metabolite compounds in seeds and pods of asparagus bean (Vigna unguiculata (L.) Walp.) from China. Molecules 25:e3778.

10.3390/molecules2517377832825166PMC7503259
37

Pidigam, S., V. Thuraga, S. Rao Pandravada, S. Natarajan, S. Adimulam, G. Amarapalli, S. Nimmarajula, and K. Venka teswaran. 2021. Genetic improvement of yardlong bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) Verdc.). In Al-Khayri, J.M., S.M. Jain, and D.V. Johnson (eds.), Advances in Plant Breeding Strategies: Vegetable Crops, Springer, Cham, Switzerland. pp. 379-420.

10.1007/978-3-030-66969-0_10
38

Quamruzzaman, A.K.M., F. Islam, L. Akter, A. Khatun, S.R. Mallick, A. Gaber, A. Laing, M. Brestic, and A. Hossain. 2022. Evaluation of the quality of yard-long bean (Vigna unguiculata sub sp. sesquipedalis L.) cultivars to meet the nutritional security of increasing population. Agronomy 12:e2195.

10.3390/agronomy12092195
39

Razgonova, M.P., M.O. Burlyaeva, Y.N. Zinchenko, E.A. Krylova, O.A. Chunikhina, N.M. Ivanova, A.M. Zakharenko, and K.S. Golokhvast. 2022. Identification and spatial distribution of bioactive compounds in seeds Vigna unguiculata (L.) Walp. by laser microscopy and tandem mass spectrometry. Plants 11:e2147.

10.3390/plants1116214736015450PMC9412441
40

Salgado, V. dos S.C.N., L. Zago, E.N. da Fonseca, M.R. da C.M. Calderari, M. Citelli and R.F. Miyahira. 2023. Chemical composition, fatty acid profile, phenolic compounds, and antioxidant activity of raw and germinated chia (Salvia hispanica L.) seeds. Plant Foods Hum. Nutr. 78:735-741.

10.1007/s11130-023-01115-037856036
41

Sardar, H., F. Hadi, W. Alam, I.F. Halawani, F.M. Alzahrani, R. Abdullah, I. Cerqua, H. Khan, and R. Capasso. 2024. Unveiling the therapeutic and nutritious potential of Vigna unguiculata in line with its phytochemistry. Heliyon 10:e37911.

10.1016/j.heliyon.2024.e3791139323861PMC11422034
42

Senghor, Y., A.B. Balde, A.G.B. Manga, F. Affholder, P. Letourmy, C. Bassene, G. Kanfany, M. Ndiaye, A. Couedel, L. Leroux, and G.N. Falconnier. 2023. Intercropping millet with low-density cowpea improves millet productivity for low and medium N input in semi-arid central Senegal. Heliyon 9:e17680.

10.1016/j.heliyon.2023.e1768037483722PMC10359769
43

Shi, Y., R. Mandal, A. Singh, and A. P. Singh. 2020. Legume lipoxygenase: Strategies for application in food industry. Legume Sci. 2:e44.

10.1002/leg3.44
44

Shubha, K., A.K. Choudhary, A. Eram, A. Mukherjee, U. Kumar, and A.K. Dubey. 2022. Screening of yardlong bean (Vigna unguiculata (L.) Walp.ssp. unguiculata cv.-gr. sesquipedalis) genotypes for seed, yield and disease resistance traits. Genet. Resour. Crop Evol. 69:2307-2317.

10.1007/s10722-022-01418-2
45

Singh, P., V.K. Pandey, Z. Sultan, R. Singh, and A.H. Da. 2023. Classification, benefits, and applications of various anti- nutritional factors present in edible crops. J. Agric. Food Res. 14:e100902.

10.1016/j.jafr.2023.100902
46

Tae, J.H., M.H. Lee, C.H. Park, S.B. Pae, K.B.O. Shim, J.M. Ko, S.O. Shin, I.N.Y. Baek, and K.Y. Park. 2010. Identification and characterization of anthocyanins in yardlong beans (Vigna unguiculata ssp. sesquipedalis L.) by high- performance liquid chromatography with diode array detection and electrospray lonization/mass spectrometry (HPLC-DAD-ESI/MS) analysis. J. Agric. Food Chem. 58:2571-2576.

10.1021/jf903883e20121192
47

Tantasawat, P., J. Trongchuen, T. Prajongjai, W. Seehalak, and Y. Jittayasothorn. 2010. Variety identification and comparative analysis of genetic diversity in yardlong bean (Vignaunguiculata spp. sesquipedalis) using morphological characters, SSR and ISSR analysis. Sci. Hortic. (Amsterdam). 124: 204-216.

10.1016/j.scienta.2009.12.033
48

Tilami, S.K. and L. Kouřimská. 2022. Assessment of the nutritional quality of plant lipids using atherogenicity and thrombogenicity indices. Nutrients 14:e3795.

10.3390/nu1418379536145171PMC9502718
49

Torres-Franklin, M., A. Repellin, V. Huynh, A. d'Arcy-Lameta, Y. Zuily-Fodil, and A. Pham-Thi. 2009. Omega-3 fatty acid desaturase (FAD3, FAD7, FAD8) gene expression and linolenic acid content in cowpea leaves submitted to drought and after rehydration. Environ. Exp. Bot. 65:162-169.

10.1016/j.envexpbot.2008.12.010
50

Traber, M.G., G.R. Buettner, and R.S. Bruno. 2019. The relationship between vitamin C status, the gut-liver axis, and metabolic syndrome. Redox Biol. 21:e101091.

10.1016/j.redox.2018.10109130640128PMC6327911
51

Tungmunnithum, D., S. Drouet, J.M. Lorenzo, and C. Hano. 2021. Characterization of bioactive phenolics and antioxidant capacity of edible bean extracts of 50 Fabaceae populations grown in Thailand. Foods 10:e67.

10.3390/foods1012311834945669PMC8700874
52

Wu, X., A.J. Cortés and M.W. Blair. 2022. Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing. Mol. Hortic. 2:1-15.

10.1186/s43897-022-00028-x37789473PMC10514946
53

Xia, Q., L. Pan, R. Zhang, X. Ni, Y. Wang, X. Dong, Y. Gao, Z. Zhang, L. Kui, Y. Li, W. Wang, H. Yang, C. Chen, J. Miao, W. Chen, and Y. Dong. 2019. The genome assembly of asparagus bean, Vigna unguiculata ssp. sesquipedialis. Sci. Data 6:e124.

10.1038/s41597-019-0130-631316072PMC6638192
54

Yu, D.S., Y.-M. Choi, X. Wang, and M. Kang. 2023. An analysis of the heritability of phenotypic traits using chloroplast genomic information of legume germplasms. Korean J. Plant Res. 36(4):369-380 (in Korean).

55

Zhang, H., W. Xu, H. Chen, J. Chen, X. Chen, and S. Yang. 2020. Evaluation and QTL mapping of salt tolerance in yardlong bean [Vigna unguiculata (L.) Walp. Subsp. unguiculata Sesquipedalis group] seedlings. Plant Mol. Biol. Rep. 38:294-304.

10.1007/s11105-020-01194-2
56

Zhang, H., W. Xu, H. Chen, J. Chen, X. Liu, X. Chen, and S. Yang. 2021. Transcriptomic analysis of salt tolerance-associated genes and diversity analysis using indel markers in yardlong bean (Vigna unguiculata ssp. sesquipedialis). BMC Genomic Data 22:e34.

10.1186/s12863-021-00989-w34530724PMC8447766
57

Zhang, N., L. Liu, H. Li, W. Wei, G. Liang, Y. Tang, Y. Zhao, O. Wei, and Q. Yang. 2024. Effects of protected cultivation on agronomic, yield, and quality traits of Yard-long bean (Vigna unguiculata ssp. unguiculata cv.-gr. sesquipedalis). Horticulturae 10:e1167.

10.3390/horticulturae10111167
Information
  • Publisher :The Plant Resources Society of Korea
  • Publisher(Ko) :한국자원식물학회
  • Journal Title :Korean Journal of Plant Resources
  • Journal Title(Ko) :한국자원식물학회지
  • Volume : 38
  • No :3
  • Pages :284-299
  • Received Date : 2025-03-12
  • Revised Date : 2025-04-01
  • Accepted Date : 2025-04-02