Research Article
Abebe, B.K. and M.T. Alemayehu. 2022. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J. Agric. Food Res. 10:e100383.
10.1016/j.jafr.2022.100383Amarowicz, R. and R.B. Pegg. 2008. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 110:865-878.
10.1002/ejlt.200800114Antova, G.A., T.D. Stoilova, and M.M. Ivanova. 2014. Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. J. Food Compos. Anal. 33:146-152.
10.1016/j.jfca.2013.12.005Anwar, R., M. Borbi, and A. Rakha. 2024. Significance and the use of legumes in developing weaning foods with a balanced nutrition-A review. Legume Sci. 6:e249.
10.1002/leg3.249Arinathan, V., V.R. Mohan, and A.J. De Britto. 2003. Chemical composition of certain tribal pulses in South India. Int. J. Food Sci. Nutr. 54:209-217.
10.1080/0963748012009202612775370Caprioli, G., F. Giusti, R. Ballini, G. Sagratini, P. Vila-Donat, S. Vittori, and D. Fiorini. 2016. Lipid nutritional value of legumes: Evaluation of different extraction methods and determination of fatty acid composition, Food Chem. 192: 965-971.
10.1016/j.foodchem.2015.07.10226304436Carvalho, M., I. Gouvinhas, I. Castro, M. Matos, E. Rosa, V. Carnide, and A. Barros. 2021. Drought stress effect on polyphenolic content and antioxidant capacity of cowpea pods and seeds. J. Agron. Crop Sci. 207:197-207.
10.1111/jac.12454Choi, H.W., M.Y. Kim, S.H. Lee, S. Sultana, and J.W. Bang. 2013. Molecular cytogenetic analysis of the Vigna species distributed in Korea. Genes Genom. 35:257-264.
10.1007/s13258-013-0089-1Choi, Y.M., H. Yoon, M.J. Shin, S. Lee, J. Yi, Y.A. Jeon, X. Wang, and K.T. Desta. 2024a. Multivariate analysis of biochemical properties reveals diversity among yardlong beans of different origins. Antioxidants 13:e463.
10.3390/antiox1304046338671911PMC11047418Choi, Y.M., M.J. Shin, H. Yoon, S. Lee, J. Yi, X. Wang, and K.T. Desta. 2024b. Nutritional qualities, metabolite contents, and antioxidant capacities of yardlong beans (Vigna unguiculata subsp. sesquipedalis) of different pod and seed colors. Antioxidants 13:e1134.
10.3390/antiox1309113439334793PMC11428976Chongtham, S.K., E.L. Devi, K.J.K. SamantaraYasin, S.H. Wani, S. Mukherjee, A. Razzaq, I. Bhupenchandra, A.L. Jat, L.K. Singh, and A. Kumar. 2022. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. Planta 256:e24.
10.1007/s00425-022-03923-135767119Devi, C.B., A. Kushwaha and A. Kumar. 2015. Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). J. Food Sci. Technol. 52:6821-6827.
10.1007/s13197-015-1832-126396436PMC4573095Dinore, J.M., H. Shivaji Patil, S. Farooqui, V. Pradhan, and M. Farooqui. 2023. GC/MS and LC/MS phytochemical analysis of Vigna unguiculata L. Walp Pod, Chem. Biodiversity 20:e202200048.
10.1002/cbdv.20220004836576750Doblado, R., J. Frías, and C. Vidal-Valverde. 2007. Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var. carilla) seeds induced by high pressure treatment. Food Chem. 101:918-923.
10.1016/j.foodchem.2006.02.043Dwivedi, S.L., M.A. Chapman, M.T. Abberton, U.L. Akpo jotor, and R. Ortiz. 2023. Exploiting genetic and genomic resources to enhance productivity and abiotic stress adaptation of underutilized pulses. Front. Genet. 14:e1193780.
10.3389/fgene.2023.119378037396035PMC10311922Farooq, M., M. Hussain, M. Usman, S. Farooq, S.S. Alghamdi, and K.H.M. Siddique. 2018. Impact of abiotic stresses on grain composition and quality in food legumes. J. Agric. Food Chem. 66:8887-8897.
10.1021/acs.jafc.8b0292430075073Flyman, M.V. and A.J. Afolayan. 2008. Effect of plant maturity on the mineral content of the leaves of Momordica balsamina L. and Vigna unguiculata subsp. sesquipedalis (L.) Verdc. J. Food Qual. 31:661-671.
10.1111/j.1745-4557.2008.00218.xGerrano, A.S., Z.G. Thungo, H. Shimelis, J. Mashilo, and I. Mathew. 2022. Genotype-by-environment interaction for the contents of micro-nutrients and protein in the green pods of cowpea (Vigna unguiculata L. Walp.). Agriculture 12:e531.
10.3390/agriculture12040531Goli, S.A.H., S.M. Sahafi, B. Rashidi, and M. Rahimmalek. 2013. Novel oilseed of Dracocephalum kotschyi with high n-3 to n-6 polyunsaturated fatty acid ratio. Ind. Crops Prod. 43:188-193.
10.1016/j.indcrop.2012.07.036Gutiérrez-Uribe, J.A., I. Romo-Lopez, and S.O. Serna-Saldívar. 2011. Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomical parts. J. Func. Foods 3:290-297.
10.1016/j.jff.2011.05.004Huynh, B.-L., R.M. Dahlquist-Willard, A.T. Pleog, M. Yang, L. Thaoxaochay, J. Kanter, S. Brar, J. Paz, S. Qaderi, H. Singh, T. Duong, H. Dinh, H.P. Kang, W.C. Matthews, A. De Souza, A. Bhatia, H. Ke, J.D. Ehlers, and P.A. Roberst. 2024. Registration of four pest‐resistant long bean germplasm lines. J. Plant Regist. 18:415-425.
10.1002/plr2.20361Karapanos, I., A. Papandreou, M. Skouloudi, D. Makrogianni, J.A. Fernández, E. Rosa, G. Ntatsi, P.J. Bebeli, and D. Savvas. 2017. Cowpea fresh pods - a new legume for the market: assessment of their quality and dietary characteristics of 37 cowpea accessions grown in southern Europe. J. Sci. Food Agric. 97:4343-4352.
10.1002/jsfa.841828485024Kouřimská, L., K. Pokhrel, M. Božik, S.K. Tilami, and P. Horčička. 2021. Fat content and fatty acid profiles of recently registered varieties of naked and hulled oats with and without husks. J. Cereal Sci. 99:e103216.
10.1016/j.jcs.2021.103216Kussie, B., Y. Tadele and A. Asresie. 2024. Effect of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) intercropping on agronomic performance, yield, and nutritional values under supplementary irrigation. Heliyon 10:e39817.
10.1016/j.heliyon.2024.e3981739568837PMC11577188Lee, D.H., J.H. Kim, C.Y. Park, K.M. Kim, H.M. Kim, U.S. Shin, D.H. Kim, C.S. Na, and W.G. Park. 2024. Antioxidant activity, total phenolic content, total flavonoid content, and total anthocyanin content of Vaccinium oldhamii Miq. collected from 11 regions of South Korea. Korean J. Plant Res. 37(3):235-246.
Lee, H.-H., J.-S. Kim, J.-H. Jeong, C.S. Kim, and S.Y. Lee. 2023. Comparative analysis of antioxidant, anti aging and phenolic compounds of different solvent extracts from Saccharina japonica and Costaria costata. Korean J. Plant Res. 36(2):107-121 (in Korean).
Lee, K.J., G.-H. Kim, G.-A. Lee, J.-R. Lee, G.-T. Cho, K.-H. Ma, and S. Lee. 2021. Antioxidant activities and total phenolic contents of three legumes. Korean J. Plant Res. 34(6):527-535.
Liang, L., J. Zhang, J. Xiao, X. Li, Y. Xie, H. Tan, X. Song, L. Zhu, X. Xue, L. Xu, P. Zhou, J. Ran, B. Sun, Z. Huang, Y. Tang, L. Lin, G. Sun, Y. Lai, and H. Li. 2022. Genome and pan-genome assembly of asparagus bean (Vigna unguiculata ssp. sesquipedialis) reveal the genetic basis of cold adaptation. Front. Plant Sci. 13:e1059804.
10.3389/fpls.2022.105980436589110PMC9802904Moloto, M.R., A.D.T. Phan, J.L. Shai, Y. Sultanbawa, and D. Sivakumar. 2020. Anti-diabetic activities in the leaves of seven cowpea (Vigna unguiculata) cultivars. Foods 9:e1285.
10.3390/foods909128532932725PMC7554895Moriyama, M. and K. Oba. 2008. Comparative study on the vitamin C contents of the food legume seeds. J. Nutr. Sci. Vitaminol. 54:1-6.
10.3177/jnsv.54.118388400Morshedloo, M.R., S. Fereydouni, H. Ahmadi, M.B. Hassanpouraghdam, A. Aghaee, L. Vojodi Mehrabani, and F. Maggi. 2022. Natural diversity in fatty acids profiles and antioxidant properties of sumac fruits (Rhus coriaria L.): Selection of preferable populations for food industries. Food Chem. 374:e131757.
10.1016/j.foodchem.2021.13175734920406Nassourou, M.A., Y.N. Njintang, T.J.B. Noubissié, R.M. Nguimbou, and J.M. Bell. 2016. Genetics of seed flavonoid content and antioxidant activity in cowpea (Vigna unguiculata L. Walp.). Crop Journal 4:391-397.
10.1016/j.cj.2016.05.011Niu, G. J. Masabni, T. Hooks, D. Leskovar, and J. Jifon. 2021. The performance of representative Asian vegetables in different production systems in Texas. Agronomy 11:e1874.
10.3390/agronomy11091874Orberá Ratón, T.M., I. Bayard Vedey and A. Cuypers. 2021. Biostimulation of Vigna unguiculata subsp. Sesquipedalis- cultivar Sesquipedalis (yardlong bean)-by Brevibacillus sp. B65 in organoponic conditions. Curr. Microbiol. 78:1882- 1891.
10.1007/s00284-021-02453-533770214Padhi, S.R., A. Bartwal, R. John, K. Tripathi, K. Gupta, D.P. Wankhede, G.P. Mishra, S. Kumar, S. Archak, and R. Bhardwaj. 2022. Evaluation and multivariate analysis of cowpea [Vigna unguiculata (L.) Walp] germplasm for selected nutrients-mining for nutri-dense accessions. Front. Sustain. Food Syst. 6:e888041.
10.3389/fsufs.2022.888041Perchuk, I., T. Shelenga, M. Gurkina, E. Miroshnichenko, and M. Burlyaeva. 2020. Composition of primary and secondary metabolite compounds in seeds and pods of asparagus bean (Vigna unguiculata (L.) Walp.) from China. Molecules 25:e3778.
10.3390/molecules2517377832825166PMC7503259Pidigam, S., V. Thuraga, S. Rao Pandravada, S. Natarajan, S. Adimulam, G. Amarapalli, S. Nimmarajula, and K. Venka teswaran. 2021. Genetic improvement of yardlong bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) Verdc.). In Al-Khayri, J.M., S.M. Jain, and D.V. Johnson (eds.), Advances in Plant Breeding Strategies: Vegetable Crops, Springer, Cham, Switzerland. pp. 379-420.
10.1007/978-3-030-66969-0_10Quamruzzaman, A.K.M., F. Islam, L. Akter, A. Khatun, S.R. Mallick, A. Gaber, A. Laing, M. Brestic, and A. Hossain. 2022. Evaluation of the quality of yard-long bean (Vigna unguiculata sub sp. sesquipedalis L.) cultivars to meet the nutritional security of increasing population. Agronomy 12:e2195.
10.3390/agronomy12092195Razgonova, M.P., M.O. Burlyaeva, Y.N. Zinchenko, E.A. Krylova, O.A. Chunikhina, N.M. Ivanova, A.M. Zakharenko, and K.S. Golokhvast. 2022. Identification and spatial distribution of bioactive compounds in seeds Vigna unguiculata (L.) Walp. by laser microscopy and tandem mass spectrometry. Plants 11:e2147.
10.3390/plants1116214736015450PMC9412441Salgado, V. dos S.C.N., L. Zago, E.N. da Fonseca, M.R. da C.M. Calderari, M. Citelli and R.F. Miyahira. 2023. Chemical composition, fatty acid profile, phenolic compounds, and antioxidant activity of raw and germinated chia (Salvia hispanica L.) seeds. Plant Foods Hum. Nutr. 78:735-741.
10.1007/s11130-023-01115-037856036Sardar, H., F. Hadi, W. Alam, I.F. Halawani, F.M. Alzahrani, R. Abdullah, I. Cerqua, H. Khan, and R. Capasso. 2024. Unveiling the therapeutic and nutritious potential of Vigna unguiculata in line with its phytochemistry. Heliyon 10:e37911.
10.1016/j.heliyon.2024.e3791139323861PMC11422034Senghor, Y., A.B. Balde, A.G.B. Manga, F. Affholder, P. Letourmy, C. Bassene, G. Kanfany, M. Ndiaye, A. Couedel, L. Leroux, and G.N. Falconnier. 2023. Intercropping millet with low-density cowpea improves millet productivity for low and medium N input in semi-arid central Senegal. Heliyon 9:e17680.
10.1016/j.heliyon.2023.e1768037483722PMC10359769Shi, Y., R. Mandal, A. Singh, and A. P. Singh. 2020. Legume lipoxygenase: Strategies for application in food industry. Legume Sci. 2:e44.
10.1002/leg3.44Shubha, K., A.K. Choudhary, A. Eram, A. Mukherjee, U. Kumar, and A.K. Dubey. 2022. Screening of yardlong bean (Vigna unguiculata (L.) Walp.ssp. unguiculata cv.-gr. sesquipedalis) genotypes for seed, yield and disease resistance traits. Genet. Resour. Crop Evol. 69:2307-2317.
10.1007/s10722-022-01418-2Singh, P., V.K. Pandey, Z. Sultan, R. Singh, and A.H. Da. 2023. Classification, benefits, and applications of various anti- nutritional factors present in edible crops. J. Agric. Food Res. 14:e100902.
10.1016/j.jafr.2023.100902Tae, J.H., M.H. Lee, C.H. Park, S.B. Pae, K.B.O. Shim, J.M. Ko, S.O. Shin, I.N.Y. Baek, and K.Y. Park. 2010. Identification and characterization of anthocyanins in yardlong beans (Vigna unguiculata ssp. sesquipedalis L.) by high- performance liquid chromatography with diode array detection and electrospray lonization/mass spectrometry (HPLC-DAD-ESI/MS) analysis. J. Agric. Food Chem. 58:2571-2576.
10.1021/jf903883e20121192Tantasawat, P., J. Trongchuen, T. Prajongjai, W. Seehalak, and Y. Jittayasothorn. 2010. Variety identification and comparative analysis of genetic diversity in yardlong bean (Vignaunguiculata spp. sesquipedalis) using morphological characters, SSR and ISSR analysis. Sci. Hortic. (Amsterdam). 124: 204-216.
10.1016/j.scienta.2009.12.033Tilami, S.K. and L. Kouřimská. 2022. Assessment of the nutritional quality of plant lipids using atherogenicity and thrombogenicity indices. Nutrients 14:e3795.
10.3390/nu1418379536145171PMC9502718Torres-Franklin, M., A. Repellin, V. Huynh, A. d'Arcy-Lameta, Y. Zuily-Fodil, and A. Pham-Thi. 2009. Omega-3 fatty acid desaturase (FAD3, FAD7, FAD8) gene expression and linolenic acid content in cowpea leaves submitted to drought and after rehydration. Environ. Exp. Bot. 65:162-169.
10.1016/j.envexpbot.2008.12.010Traber, M.G., G.R. Buettner, and R.S. Bruno. 2019. The relationship between vitamin C status, the gut-liver axis, and metabolic syndrome. Redox Biol. 21:e101091.
10.1016/j.redox.2018.10109130640128PMC6327911Tungmunnithum, D., S. Drouet, J.M. Lorenzo, and C. Hano. 2021. Characterization of bioactive phenolics and antioxidant capacity of edible bean extracts of 50 Fabaceae populations grown in Thailand. Foods 10:e67.
10.3390/foods1012311834945669PMC8700874Wu, X., A.J. Cortés and M.W. Blair. 2022. Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing. Mol. Hortic. 2:1-15.
10.1186/s43897-022-00028-x37789473PMC10514946Xia, Q., L. Pan, R. Zhang, X. Ni, Y. Wang, X. Dong, Y. Gao, Z. Zhang, L. Kui, Y. Li, W. Wang, H. Yang, C. Chen, J. Miao, W. Chen, and Y. Dong. 2019. The genome assembly of asparagus bean, Vigna unguiculata ssp. sesquipedialis. Sci. Data 6:e124.
10.1038/s41597-019-0130-631316072PMC6638192Yu, D.S., Y.-M. Choi, X. Wang, and M. Kang. 2023. An analysis of the heritability of phenotypic traits using chloroplast genomic information of legume germplasms. Korean J. Plant Res. 36(4):369-380 (in Korean).
Zhang, H., W. Xu, H. Chen, J. Chen, X. Chen, and S. Yang. 2020. Evaluation and QTL mapping of salt tolerance in yardlong bean [Vigna unguiculata (L.) Walp. Subsp. unguiculata Sesquipedalis group] seedlings. Plant Mol. Biol. Rep. 38:294-304.
10.1007/s11105-020-01194-2Zhang, H., W. Xu, H. Chen, J. Chen, X. Liu, X. Chen, and S. Yang. 2021. Transcriptomic analysis of salt tolerance-associated genes and diversity analysis using indel markers in yardlong bean (Vigna unguiculata ssp. sesquipedialis). BMC Genomic Data 22:e34.
10.1186/s12863-021-00989-w34530724PMC8447766- Publisher :The Plant Resources Society of Korea
- Publisher(Ko) :한국자원식물학회
- Journal Title :Korean Journal of Plant Resources
- Journal Title(Ko) :한국자원식물학회지
- Volume : 38
- No :3
- Pages :284-299
- Received Date : 2025-03-12
- Revised Date : 2025-04-01
- Accepted Date : 2025-04-02
- DOI :https://doi.org/10.7732/kjpr.2025.38.3.284